Substituent Effects on the Stability of Thallium and Phosphorus Triple Bonds: A Density Functional Study.

نویسندگان

  • Jia-Syun Lu
  • Ming-Chung Yang
  • Ming-Der Su
چکیده

Three computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp) were used to study the effect of substitution on the potential energy surfaces of RTl≡PR (R = F, OH, H, CH₃, SiH₃, SiMe(SitBu₃)₂, SiiPrDis₂, Tbt (=C₆H₂-2,4,6-(CH(SiMe₃)₂)₃), and Ar* (=C₆H₃-2,6-(C₆H₂-2, 4,6-i-Pr₃)₂)). The theoretical results show that these triply bonded RTl≡PR compounds have a preference for a bent geometry (i.e., ∠R⎼Tl⎼P ≈ 180° and ∠Tl⎼P⎼R ≈ 120°). Two valence bond models are used to interpret the bonding character of the Tl≡P triple bond. One is model [I], which is best described as TlP. This interprets the bonding conditions for RTl≡PR molecules that feature small ligands. The other is model [II], which is best represented as TlP. This explains the bonding character of RTl≡PR molecules that feature large substituents. Irrespective of the types of substituents used for the RTl≡PR species, the theoretical investigations (based on the natural bond orbital, the natural resonance theory, and the charge decomposition analysis) demonstrate that their Tl≡P triple bonds are very weak. However, the theoretical results predict that only bulkier substituents greatly stabilize the triply bonded RTl≡PR species, from the kinetic viewpoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Substituent effect on Osmabenzene complexes

The electronic structure and properties of the osmaabenzenes and para substituted osmabenzenes have been explored using the hybrid density functional mpw1pw91 theory. Systematic studies on the substituent effect in para substituted osmabenzenes complexes have been studied. The following substituents were taken into consideration: H, F, CH3,OH, NH2,CN, NO<...

متن کامل

Applying Density Functional Theory to Study NLO Properties of Benzyne-Based Chromophores

Density Functional Theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Benzyne-Based Chromophores at B3LYP/6-31G(d,p) level. The effects on the hyperpolarizabilities of various donor and acceptor substituent (H, F, Cl, Br, Me, NH2, OH, NH3+, COOH, CHO, CN, NO,NO2 ) were studied. The results reveale...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Basis Set Effects in Density Functional Calculations and BSSEcorrected on the Molybdate-Phosphonic acid Complex

In this research, this possibility was investigated the relative stablilty geometry and bindingenergies of the hydrogen bonds of Molybdate-Phosphonic Acid (MPA) complex in gas phase onthe basis of result of ab initio and DFT calculations. Three DFT methods have been applied forcalculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets:D95** and 6-31+G(d,p) for hy...

متن کامل

The Solvent Effects on Relative Stability of allolybdatc-Phosphonic Acid Complex: A Theoretical Study

The structure and relative stability of Molybdata-Phosphonic Acid (MP) Complex in different solventshave been carried out using Density Functional Theory (DP[) methods. The methods me used forcalculations are B3LYP and 83PW91. that have been studied in two series of basis sets: D95"and 6-31+0(cl,p) for hydrogen and oxygen atoms; LANL2OZ for Mn and Phosphorus. Predicted geometw and relativestabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2017